

Temperature Probes

Temperature probe features

- Stainless steel-encased probes that provide highly reliable sensor performance in a thermowell or direct cryogen contact
- Highly customizable to suit your particular application
- May be configured with many sensor types, including Cernox® for superior temperature performance from room temperature down to 4 K (-269.15 °C) and below
- Thin-walled probe tubing reduces thermal lag and heat leak from outside the measurement space
- Ideal for temperature measurements in fluid containers and tanks
- Full 3 year standard warranty

Lake Shore offers a variety of temperature sensors in packages that enable mounting in very tight areas. But for some applications (especially if the sensors have to be immersed in liquid) you need to do more to protect the sensor circuitry. For these applications, a cryogenic temperature probe is the optimum choice. Encased in one of these stainless steel thermowell fixtures, the sensor can perform as designed, unaffected by high pressure and sealed to keep electrical components and wiring protected from fluids and other elements.

Typical applications

Lake Shore temperature probes are ideal for thermometry applications where you need to measure inside:

- fluid containers, tanks, and pipes
- cryostats and cryogenic liquid flow meters
- other liquid storage systems.

Highly customizable

Lake Shore temperature probes are made-to-order with a wide range of configuration options available. These include:

- Multiple sensor types including our extremely popular Cernox® RTDs and DT-670 diodes
- Either 1/8 in or 1/4 in stem diameter in lengths up to 0.71 m (28 in) are standard
- Various mounting adapters suited for either positive or negative pressures, if required
- Numerous connectivity options including wire types and lengths as well as various terminating connectors for direct connection to Lake Shore temperature instruments or third party equipment

If you do not see an option available as part of our standard offerings, please contact Lake Shore to discuss further customization options.

Specifications

Note: These probes are not designed to be intrinsically safe. It is the responsibility of the user to operate these probes safely in explosive environments.

Probe construction

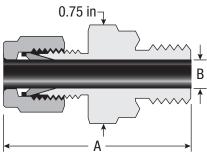
Stem

Material: 316 stainless steel (non-magnetic)¹

	Wall thickness	Maximum length	
1/4 in stem	0.028 in ±0.003 in	28 in*	
1/8 in stem	0.010 in ±0.001 in	20 in	

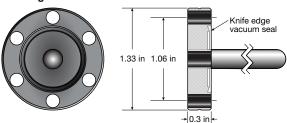
²Not suitable for direct immersion in liquid oxygen or hydrogen environments.

Internal components


Internal atmosphere: Air

Internal atmosphere pressure: 98 kPa (14.2 psia)

Internal sensor wire: Quad-Twist™ 4-lead 36 AWG phosphor bronze wire with polyimide insulation


Probe mount

Swagelok® fittings

	1/4 in probe	1/8 in probe
Swagelok® part number:	SS-400-1-4BT	SS-200-1-2BT
Material	316 stainless steel	
Thread	0.25 in NPT male	0.125 in NPT male
Α	1.59 in	1.5 in
В	0.25 in	0.125 in

CF flange

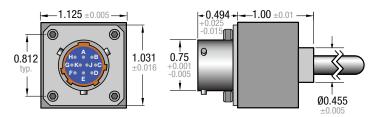
Material: 304L stainless steel Flange size: 11/3 in (DN16)

Vacuum rating: 1×10^{-13} torr (<1.3 × 10⁻¹³ mbar)*

Connectors

BNC connector

Standard male BNC connector. When ordering with 4-lead wire, two separate BNC connectors will be provided to maintain the 4-lead measurement.


Configuration:

	BNC 1 Center pin Shield		BN	C 2
			Center pin	Shield
2-lead cable	I/V+ (anode)	I/V- (cathode)	_	_
4-lead cable	l+	I-	V+	V-

10-pin Detoronics® connector

The Detoronics connector is o-ring sealed to the temperature probe.

Note: This connector is mounted directly to the probe, meaning that no external cable can be selected with this option. It also eliminates the CF flange probe mount option.

General specifications

Air leakage: 1 \times 10⁻⁶ cm³/s at 15 psi Insulation resistance: 5,000 M Ω at 500 VDC

Operating temperature: -55 °C to +125 °C (-67 °F to +257 °F)

Finish is tin-plated shell and pins.

Materials

Shell, bayonet and flange: Carbon steel

Pins: 52 nickel alloy Insulator: Glass

25-pin D-sub connector

The 25-pin D-sub is required to connect directly to particular Lake Shore temperature monitors.

Supported instruments:

- Model 211
- Model 218

6-pin DIN connector

The 6-pin DIN is required to connect directly to particular Lake Shore temperature controllers and monitors.

Supported current instruments:

- Model 350
- Model 336
- Model 335
- Model 224

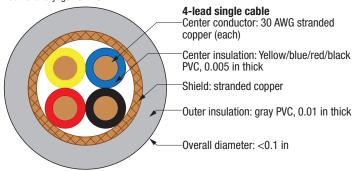
Supported discontinued instruments:

- Model 340
- Model 331/332
- Model 330 (diodes only)
- Model 321 (silicon diodes only)

²Longer lengths may be possible depending on the overall configuration. Please contact Lake Shore to discuss.

^{*}Requires the use of appropriate bolts, gasket and mating surface.

Connector configurations


Connector type	l+	V+	l-	V-	Shield*
2-lead BNC (1 connector)	Cente	Center pin		Outer cup (shield)	
4-lead BNC (2 connectors)	Center pin of 'I' BNC	Center pin of 'V' BNC	Outer cup of 'I' BNC	Outer cup of 'V' BNC	Not connected
10-pin probe- mounted Detoronics connector®	Pin A	Pin C	Pin B	Pin D	NA
6-pin DIN	Pin 5	Pin 4	Pin 1	Pin 2	Pin 6
25-pin D-sub	Pin 3	Pin 4	Pin 15	Pin 16	Pin 2

^{*}Shield connection is only used in conjunction with external cable choices that include a braided shield (Cryocable™ and instrument cable)

Wire

Instrument cable

Robust 4-lead cable best for wiring to instrument where both the wire and instrument are at room temperature. The 30 AWG signal wires make these wires easier to work with than traditional cryogenic wire.

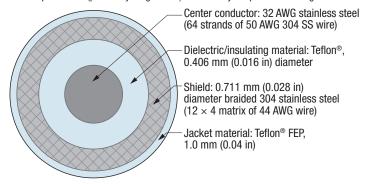
Rated temperature: -20 °C to 80 °C Thermal conductivity (300 K): 400 W/(m·K)

Resistance (300 K): $0.32 \Omega/m$

Supported sensor types: Cernox® RTD, silicon diode, GaAlAs diode, platinum RTD

Maximum rated temperature: 378 K

Cryogenic wire


Phosphor-bronze wire combinations that limit heat transfer into the temperature probe and are themselves rated for use in cryogenic environments.

	Quad-Twist™ 36 AWG*	Quad-Twist™ 32 AWG	Quad-Lead™ 32 AWG	Duo-Twist™ 32 AWG
Configuration		4-lead		2-lead
Wire		Phospho	r bronze	
Gauge	36 AWG		32 AWG	
Insulation	Formvar		Polyimide	
Structure	Two twis	Four wires formed into a ribbon using Bond Coat 999 bonding film		One twisted pair
Thermal conductivity (300 K)		48 W/(m·K)		
Resistance (300 K)	10.3 Ω/m	4.02 Ω/m		
Supported sensors	Cernox® RTD, sil	silicon diode, GaAlAs diode, platinum RTD Diodes on		Diodes only

*Also used for internal probe wiring. Ordering this cable will result in a continuous length of wire from the sensor through to the outside environment.

SS (stainless steel) coaxial cable

2-lead cabling solution that is extremely robust and limits heat transfer into the probe. Due to the 2-lead configuration, this cable is only compatible with diode sensors and will cause a predictable (potentially insignificant) offset in any temperature readings.

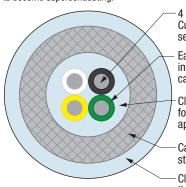
Electrical properties

Resistance—center conductor at 295 K (22 °C): $23.62 \Omega/m$ (7.2 Ω/ft)

Resistance—shield at 295 K (22 °C): $3.61~\Omega/m$ (1.1 Ω/ft)

Insulation temperature range: 10 mK to 473 K $\,$

Supported sensor types: Silicon diode, GaAlAs diode, platinum RTD


Cryocable™

A robust, 4-wire cable for use in cryogenic environments to room temperature for the

Cryocable[™]

A robust, 4-wire cable for use in cryogenic environments to room temperature for the ultimate in thermal isolation from external heat sources. This cable is designed around 32 AWG (203 $\mu m)$ diameter superconductive wires consisting of a NbTi core (128 μm diameter) and a Cu-10% Ni jacket. The wire is LTS, requiring very low temperatures for it to become superconducting.

-4 32 AWG wires: Nb-48wt%Ti core with Cu-10wt%Ni jacket, CuNi to NbTi cross sectional area ratio = 1.5:1

Each wire overcoated with Teflon® (PFA) insulation 0.003 in (75 μ m) thick; wires cabled with approx. 25 mm twist pitch

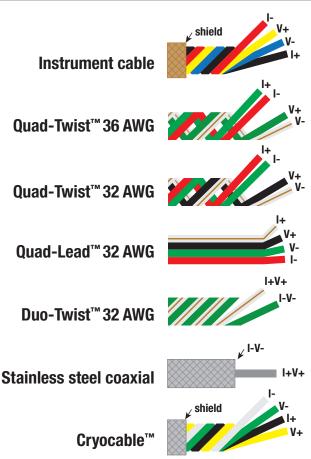
Clear Teflon® (PFA) extruded over the four-wire cable to an overall diameter of approx. 1.2 mm (0.048 in)

Cable overbraided with 304 stainless steel wire

Clear Teflon® (PFA) 0.008 in (200 μ m) thick extruded over the entire cable; finished cable has an overall diameter 2.4 mm \pm 0.2 mm (0.094 in \pm 0.008 in)

 $\label{eq:minimum bend radius: 15 mm (0.6 in)} \textbf{Superconducting critical temperature: } 9.8 \text{ K} \\ \textbf{Superconducting critical magnetic field: } 10 \text{ T}$

Supported sensor types: Cernox™ RTD, silicon diode, GaAlAs diode, platinum RTD


Magnetic field	Critical current (per wire)
3 T	35 A
5 T	25 A
7 T	15 A
9 T	6 A

	Temperature (K) 295 77 4.2		
Wire resistance (Ω/m)	9.2	8.4	0*
Overbraid resistance (Ω/m)	0.90	0.64	0.62
Thermal conductivity—entire cable assembly (W/(m-K))	7.6	2.8	0.17

^{*}Superconducting

Wire configurations

Wire type	l+	V+	I-	V-	Shield
Instrument cable	Black	Yellow	Red	Blue	Copper braid
Quad-Twist™ 36 AWG	Green (from red/green pair)	Green (from clear/green pair)	Red	Clear	None
Quad-Twist™ 32 AWG	Red	Black	Green	Clear	None
Quad-Lead™ 32 AWG	Clear	Black	Red	Green	None
Duo-Twist™ 32 AWG	Clear		Gree	en	None
Stainless steel coaxial	Center conductor		Shie	eld	None
Cryocable™	Black	Yellow	White	Green	Stainless steel braid

Temperature sensors

See the individual Cernox, DT-670, and platinum sensor pages for specifications:

Sensor type	Installed sensor package
Cernox™	SD
DT-670	SD
Platinum	Standard PT-100 Series packages

All temperature sensor calibrations are performed before the device is installed into the probe. At this time, Lake Shore does not perform recalibrations on finished probes.

Temperature probe ordering information

The easiest way to request a quote for a temperature probe is to use the online configurator at www.lakeshore.com. Otherwise contact our Sales department at sales@lakeshore.com and we can assist you.

Specify TP-a-bcd-e-f-g, where:

a = probe length in inches—offered in whole inch increments from 1 to 28 inches

b = tube diameter¹

2	1/8 in
4	1/4 in

¹ Probes over 20 inches long are only available in 1/4-inch diameter

c = probe mount

	N	no probe mount adapter
	S	Swagelok® fitting ²
I	F	CF™ flange mount ³

² For 1/8 in diameter probe, Swagelok® fitting uses a 1/8 in NPT male thread; for 1/4 in diameter probe, Swagelok® fitting uses a 1/4 in NPT male thread

d = external cable/wire type⁴

	* 1	
N	no external cable (usually used with Detoronics connector)	
S	S1 coaxial cable (2-lead)	
- 1	30 AWG instrument cable (4-lead)	
T	DT-32 (twisted pair of 32 AWG phosphor bronze wire)	
F	QT-32 (two twisted pairs of 32 AWG phosphor bronze wire)	
Q	QT-36 (two twisted pairs of 36 AWG phosphor bronze wire)	
L	QL-32 (four 32 AWG wires in a ribbon configuration)	
C	CryoCable™ (4-lead cryogenic coaxial cable)	
4 1 1	O	

⁴ Lake Shore strongly recommends that all RTD temperature sensors use a 4-lead cable/wire type

e = terminator

N	no connector (leads stripped and tinned)
В	BNC connector
D	10-pin Detoronics connector ⁵
Y	25-pin D-shell connector for temperature monitors
R	connector wired for temperature instruments (6-pin round)

⁵ Selecting a Detoronics connector limits the following selections: d = N and f = 0; the Detoronics connector is o-ring sealed to the probe

f = external cable length — offered in whole meter increments from 1 to 10 m (enter '0' for no external cable)

g = **temperature sensor type**⁶—specify sensor model number with calibration range, if applicable

Ordering example

TP- 06 - 2FS - B - 03 - S27

(6 in probe, 1/8 in diameter, flange, S1 coaxial cable, BNC connector, 3 m cable length, DT-670-SD calibrated 1.4 K to 325 K)

Calibration range suffix codes

Numeric figure is the low end of the calibration Letters represent the high end: B = 40 K, D = 100 K, L = 325 K, H = 500 K

Cernox™ RTDs

Uncalibrated	C01	CX-1010-SD			
	C02	CX-1030-SD			
	C03	CX-1050-SD			
	C04	CX-1070-SD			
	C05	CX-1080-SD			
Calibrated	C07	CX-1010-SD-0.1L			
	C16	CX-1030-SD-0.3L			
	C25	CX-1050-SD-1.4L			
	C31	CX-1070-SD-4L			
	C32	CX-1080-SD-20L			
	C13	CX-1010-SD-1.4L			

Platinum RTDs

Uncalibrated	P01	PT-102			
	P02	PT-103			
	P03	PT-111			
Calibrated	P04	PT-102-2S			
	P05	PT-102-3S			
	P07	PT-102-14L			
	P08	PT-102-14H			
	P11	PT-103-2S			
	P12	PT-103-3S			
	P14	PT-103-14L			
	P15	PT-103-14H			
	P18	PT-111-2S			
	P19	PT-111-3S			
	P21	PT-111-14L			
	P22	PT-111-14H			

Silicon diodes

omoon aloudo				
S07	DT-670A-SD			
S08	DT-670B-SD			
S09	DT-670C-SD			
S10	DT-670D-SD			
SOA	DT-670A1-SD			
SOB	DT-670B1-SD			
S27	DT-670-SD-1.4L			
S28	DT-670-SD-1.4H			
S32	DT-670-SD-70L			
S33	DT-670-SD-70H			
	\$08 \$09 \$10 \$0A \$0B \$27 \$28 \$32			

GaAlAs diodes

Uncalibrated	G01	TG-120-SD			
Calibrated	G04	TG-120-SD-1.4L			
	G05	TG-120-SD-1.4H			
	G10	TG-120-SD-70L			
	G11	TG-120-SD-70H			

 $^{^{\}scriptscriptstyle 3}$ The $\text{CF}^{\scriptscriptstyle \text{TM}}$ flange is welded to the probe

 $^{^{\}rm 6}$ Due to indium solder use, all SD sensors have an upper temperature usage limit of 400 K